
Expert Systems With Applications 69 (2017) 277–287 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Fast sampling methods for Bayesian max-margin models 

Wenbo Hu, Jun Zhu 

∗, Bo Zhang 

Dept. of Comp. Sci. & Tech., State Key Lab of Intell. Tech. & Sys., TNList Lab, Center for Bio-Inspired Computing Research, Tsinghua University, Beijing, 

10 0 084, China 

a r t i c l e i n f o 

Article history: 

Received 27 March 2016 

Revised 8 September 2016 

Accepted 16 October 2016 

Available online 17 October 2016 

Keywords: 

Inference 

Stochastic MCMC 

Subgradient MCMC 

Bayesian max-margin models 

Approximate detailed balance 

a b s t r a c t 

Bayesian max-margin models have shown superiority in various practical applications, such as text cat- 

egorization, collaborative prediction, social network link prediction and crowdsourcing, and they conjoin 

the flexibility of Bayesian modeling and predictive strengths of max-margin learning. However, Monte 

Carlo sampling for these models still remains challenging, especially for applications that involve large- 

scale datasets. In this paper, we present the stochastic subgradient Hamiltonian Monte Carlo (HMC) meth- 

ods, which are easy to implement and computationally efficient. We show the approximate detailed bal- 

ance property of subgradient HMC which reveals a natural and validated generalization of the ordinary 

HMC. Furthermore, we investigate the variants that use stochastic subsampling and thermostats for bet- 

ter scalability and mixing. Using stochastic subgradient Markov Chain Monte Carlo (MCMC), we efficiently 

solve the posterior inference task of various Bayesian max-margin models and extensive experimental re- 

sults demonstrate the effectiveness of our approach. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Bayesian max-margin (BMM) models have been shown to be

ery effective in many real-world applications, such as text analy-

is ( Zhu, Ahmed, & Xing, 2012 ), collaborative prediction ( Xu, Zhu,

 Zhang, 2012 ), social network link prediction ( Zhu, 2012 ) and

rowdsourcing ( Tian & Zhu, 2015 ). Such BMM models conjoin the

dvantages of the discriminative max-margin learning and flexible

ayesian models, and they achieve the best of the both worlds: ob-

aining the flexibility from a Bayesian model and meanwhile doing

iscriminative max-margin learning, through a newly-developed

nified Bayesian inference framework, regularized Bayesian infer-

nce (RegBayes) ( Zhu, Chen, & Xing, 2014 ). 

In order to deal with large-scale datasets, developing effective

nd scalable inference methods is a crucial problem for Bayesian

ax-margin models, which is becoming a norm in many appli-

ation areas. Previous variational-approximation-based inference 

ethods are raised to solve the BMM models with mean-field as-

umptions on posterior distributions ( Zhu et al., 2012 ). When the

MM models use nonparametric Bayesian priors, such variational

ethods need to adopt the model truncation to finish the varia-

ional approximation ( Xu, Zhu, & Zhang, 2013; Zhu, Chen, & Xing,

011 ). Moreover, in such inference scheme, solving support vec-
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or machine (SVM) subproblems is time-consuming, which moti-

ated the further developments of the Gibbs classifier formulation

nd the data augmentation-based Gibbs sampler ( Xu et al., 2013;

hang, Zhu, & Zhang, 2014; Zhu, Chen, Perkins, & Xing, 2014 ). 

In Bayesian inference, if we use a conjugate prior (w.r.t a given

ikelihood), we can easily derive the close-form posterior ( Gelman,

arlin, Stern, & Rubin, 2014 ). However, the BMM models are usu-

lly non-conjugate due to the non-smoothness of the hinge loss,

hich is often involved in an unnormalized pseudo-likelihood. The

traightforward Gibbs sampler is not applicable due to the non-

onjugacy. With a newly discovered data augmentation technique

 Polson & Scott, 2011 ), the augmented Gibbs sampler achieves ac-

urate posterior sampling and is truncation-free for nonparametric

MM models ( Xu et al., 2013; Zhang et al., 2014 ). However, the

ibbs samplers with data augmentation are not efficient either in

igh-dimensional spaces as they often involve inverting large ma-

rices ( Polson & Scott, 2011 ). Moreover, the benefit of introduc-

ng extra variables would be counteracted in the view of the extra

omputation on dealing with the extra sampling variables ( Roberts

 Stramer, 2002 ). 

In this paper, we present the subgradient-based Hamiltonian

onte Carlo (HMC) methods for BMM models, which directly draw

amples from the original posterior instead of the augmented one.

fter adopting some mild conditions of the posterior functions,

e show the approximate detailed balance property for subgra-

ient HMC methods. Then using stochastic subgradient estima-

ion ( Robbins & Monro, 1951; Welling & Teh, 2011 ), we further

http://dx.doi.org/10.1016/j.eswa.2016.10.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
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develop the stochastic subgradient MCMC for fast computation.

By annealing the discretization stepsizes properly, our stochastic

subgradient MCMC methods approximately converge to the target

posteriors of basic Bayesian SVM fairly efficiently. To apply stochas-

tic subgradient MCMC on two different types of BMM models

with latent variables, we design two different inference algorithms

for latent structure discovery, including a nonparametric Bayesian

model. Our stochastic subgradient MCMC can achieve dramatically

fast sampling and meanwhile draw accurate posterior samples. We

carry out extensive empirical studies on large-scale applications to

show the effectiveness and scalability of the presented stochastic

subgradient MCMC methods for BMM models. 

We note that there have been several previous attempts of

using subgradient information in HMC or Langevin Monte Carlo

( Neal, 2012; Welling & Teh, 2011 ), yet our work stands as a first

close investigation, in which we give the theoretical guarantee and

carry out systematic studies on the stochastic subgradient MCMC

for Bayesian max-margin learning. 

2. Preliminaries 

We first briefly review the Bayesian max-margin models with

Gibbs classifiers. Then, we introduce the background knowledge of

the inference methods, including Hamiltonian Monte Carlo (HMC)

and its extension, as well as stochastic gradient Hamiltonian Monte

Carlo. 

2.1. Bayesian max-margin models 

With the generic framework of RegBayes ( Zhu, Chen, & Xing,

2014 ), we can design more flexible Bayesian models by adding

proper regularization on the target posterior. Namely, after adding

posterior regularization to a functional-optimization-reformulated

Bayesian model, a RegBayes model generally solves the following

problem, 

inf 
q (M ) ∈P 

KL ( q (M ) || π(M ) ) − E q [ log p(D|M )] + c · R (q ) , (1)

where M denotes the model (parameters); P is the feasible space

of probability distributions q (M ) ; KL( q ( ·)|| π ( ·)) is the KL diver-

gence from the target posterior q (M ) to the prior π(M ) ; D is

the observation dataset; c is a nonnegative regularization param-

eter and R (q ) is a well-designed regularization term on q . It is not

hard to show that if c equals to 0, the solution of problem (1) is the

Bayes posterior q (M ) ∝ π(M ) p(D|M ) . If c is not zero, we have

an extra dimension of freedom to introduce side information into

the inference procedure through the posterior regularization term

R (q ) . For example, when the regularization R is defined as a hinge

loss in supervised learning tasks, such Regbayes models turn out to

be Bayesian max-margin models and they successfully incorporate

the flexibility of Bayesian models and the max-margin classifiers.

This strategy has demonstrated promising performance in various

tasks, including text classification and topic extraction ( Zhu et al.,

2012 ), social network analysis ( Zhu, 2012 ), and matrix factorization

( Xu et al., 2012 ). 

In this paper, we consider two examples of Bayesian max-

margin models with latent variables, including max-margin topic

model (MedLDA) ( Zhu et al., 2012 ) and infinite SVM (iSVM) ( Zhu

et al., 2011 ). But our methods can be applied to other BMM mod-

els. Specifically, MedLDA uses a topic model to find the latent topic

representations of the documents and uses a max-margin classi-

fier to do document classification. Infinite SVM generally uses a

Bayesian nonparametric Dirichlet process prior to describe data

multi-modality and meanwhile uses max-margin classifiers to do

discriminative tasks. More details of these two examples will be

provided along the development of the proposed fast samplers for

them. 
.2. BMM models with a Gibbs classifier 

In the supervised learning setting, there are generally two types

f classifiers that can be used with a Bayesian model to define a

MM model, namely, expected classifiers and Gibbs classifiers. In

his part, we give the introduction of the two formulations and an-

lyze the merits of choosing Gibbs classifiers. 

Let D = { (x d , y d ) } D d=1 
be a given training set. For each data point

(x d , y d ) ∈ D, x d denotes the input features and y d is the corre-

ponding label, which can be binary or multi-valued. To build a

lassifier, a Bayesian max-margin model can either use the input

eatures or learn a set of latent features. We use x ′ 
d 

to denote the

eatures that are fit into a classifier. We consider the linear classi-

er parameterized by η. Then if the labels are binary, the predic-

ion rule is defined as 

ˆ 
 d = sgn 

[
f (η, x ′ d ) 

]
, f (η, x ′ d ) = η� x ′ d , (2)

here sgn( ·) is the sign function. 

For the above setting, an expected classifier learns a poste-

ior distribution q ( η) in a hypothesis space of classifiers that the

 -weighted classifier ˆ y d = sgn 

(
E q [ f (η, x ′ 

d 
] 
)

will have the small-

st possible risk, which is typically approximated by the training

rror R D (q ) = 

∑ D 
d=1 I ( ̂  y d � = y d ) , where I (·) is an indicator func-

ion that equals to 1 if predicate holds otherwise 0. We define

hat L (y d , E q [ f (η, x ′ 
d 
)]) = max (0 , l − y d E q [ f (η, x ′ 

d 
)]) is the hinge

oss function with regard to data point d and l ( ≥ 1) is the cost

f making a wrong prediction. Then, we can use the RegBayes for-

ulation ( Eq. (1) ) to define a BMM model with an expected clas-

ifier by choosing the loss term R = 

∑ D 
d=1 L (y d , E q [ f (η, x ′ 

d 
)]) . It is

nown that the hinge loss R upper bounds the training error R D . 
Alternatively, the Gibbs classifier draws a classifier η according

o q ( η) and uses it to do classification, which is proven to have nice

eneralization performance ( Germain, Lacasse, Laviolette, & Marc-

and, 2009; McAllester, 2003 ). In the Gibbs classifier, the corre-

ponding loss is the expected hinge loss , 

 

′ = 

D ∑ 

d=1 

E q [ L (y d , f (η, x ′ d ))] . (3)

ince the hinge loss function L is convex, we can show that R 

′ is

n upper bound of R , using Jensen’s inequality: 

 q [ L (y d , f (η, x ′ d ))] ≥ L (y d , E q [ f (η, x ′ d )]) . (4)

hen, the expected hinge loss R 

′ is also the upper bound of the ex-

ected training error of the Gibbs classifier R 

′ (q ) ≥ ∑ 

d E q [ I (y d � =
ˆ  d )] . Therefore, the Gibbs classifier formulation gives a more relaxed

odel while at the same time can obtain uncertainty because we

raw a single model for each time. In addition, with Gibbs classi-

ers, truncation-free sampling can be performed for BMM models

ith Bayesian nonparametric priors, which is more accurate than

ariational approximation. The BMM models with Gibbs classifiers

re already shown to have better performance of both classifica-

ion results and efficiency of the inference algorithms ( Xu et al.,

013; Zhang et al., 2014; Zhu, Chen, Perkins, et al., 2014 ). 

.3. Hamiltonian Monte Carlo 

One popular MCMC inference method is Hamiltonian Monte

arlo (HMC), also known as Hybrid Monte Carlo ( Neal, 2012 ).

amiltonian Monte Carlo is built on the molecular dynamics and

he advantage of HMC over random walk Metropolis and Gibbs

ampling is proposing a distant move with a high acceptance prob-

bility. More recently, the stochastic extensions of HMC are devel-

ped for fast sampling. 

Formally, we are interested in the posterior distribution

p(θ |D) ∝ exp (−U(θ ;D)) , where θ denotes the variables of inter-



W. Hu et al. / Expert Systems With Applications 69 (2017) 277–287 279 

e  

n  

d  

e

U

w  

g  

m  

M  

e

 

H  

d  

o  

w⎧⎪⎪⎪⎨
⎪⎪⎪⎩
w  

(

f

 

b  

a

 

H  

t

2

 

i  

r  

e  

w  

&

 

v  

l  

d  

g  

o

∇  

w  

p  

r

 

m  

(  

t  

t  

a⎧⎪⎨
⎪⎩

∏

w  

o  

N
 

w  

c  

S  

t

3

 

t  

n  

e  

e

3

 

H  

p  

s  

c

 

n  

m⎧⎪⎪⎨
⎪⎪⎩
w  

s

 

a  

n  

b  

a  

s

 

t  

m  

e  

n  

s  

s  

c  

p

 

e  

U  

n  

ε  

c  

U  

s

U

w  
st and U is the potential energy function in the Hamiltonian dy-

amics ( Arnold, 1978 ). Consider the general case where a posterior

istribution jointly takes into account the prior belief and data. The

nergy function is written as 

(θ ;D) = − log p 0 (θ ) − log p(D| θ ) , (5) 

here p 0 ( θ ) is the prior and p(D| θ ) = 

∏ 

d p(x d | θ ) is the likelihood

iven the common i.i.d assumption. 1 After introducing auxiliary

omentum variables r and its symmetric positive-definite mass

 , the HMC sampler simulates the joint distribution: p(θ, r) ∝
xp 

(
−U(θ ;D) − r � M 

−1 r/ 2 
)
. 

Assuming a differentiable potential energy U ( θ ), we can use an

MC sampler to infer the posterior distribution via simulating the

ynamics with some discretization integrators such as the Euler

r leapfrog. Specifically, using the conventional leapfrog integrator

ith stepsize h , the HMC method performs the following steps: 
 

 

 

 

 

 

 

 

 

r t+ 1 2 
= r t − h 

2 

∇ θU(θt |D) 

θt+1 = θt + hM 

−1 r t+ 1 2 

r t+1 = r t+ 1 2 
− h 

2 

∇ θU(θt+1 |D) , 

(6) 

here r 0 is initialized as r 0 ∼ N (0 , M) . Having obtained samples of

 θ , r ), we discard the momentum variable r and get samples of θ
rom our target posterior. 

In particular, if only one leapfrog step is used and M is set to

e the identity matrix, we can obtain Langevin Monte Carlo (LMC),

 special case of HMC ( Neal, 2012 ). 

To compensate for the discretization error, a Metropolis-

astings correction step is employed to retain the invariance of the

arget distribution. 

.4. Stochastic gradient HMC 

One challenge of the gradient-based HMC methods on deal-

ng with massive data is the expensive evaluation of the poste-

ior gradient ∇ θU(θ ;D) . To save time, an unbiased noisy gradi-

nt estimate ∇ θ
˜ U (θ ;D) can be constructed by subsampling the

hole dataset, as in stochastic optimization ( Bottou, 2010; Robbins

 Monro, 1951 ). 

This idea was first proposed in Welling and Teh (2011) to de-

elop the stochastic gradient Langevin dynamics (SGLD), and was

ater extended by Chen, Fox, and Guestrin (2014) for stochastic gra-

ient HMC with friction and by Ding et al. (2014) for stochastic

radient HMC with thermostats. In these stochastic MCMC meth-

ds, the gradient of the log-posterior is estimated as 

 θ
˜ U (θ ;D ) = 

|D | 
| ̃  D | ∇ θU(θ ; ˜ D ) , (7)

here ˜ D is a randomly-drawn subset of D. Since | ̃  D | � |D| , com-

uting this noisy gradient estimate turns out much cheaper, hence

endering the overall algorithm scalable. 

We now briefly review the stochastic gradient HMC with ther-

ostats, or stochastic gradient Nosé–Hoover thermostat (SGNHT)

 Ding et al., 2014 ). SGNHT uses the simple Euler integrator and in-

roduces a thermostat variable ξ to control the momentum fluc-

uations as well as the injected noise. The dynamics is simulated

s: 
 

 

 

 

 

r t+1 = r t − hξt r t − h ∇ θ
˜ U (θt |D) + 

√ 

2 A N (0 , h ) 
θt+1 = θt + hr t+1 

ξt+1 = ξt + h 

(
1 

n 

r � t+1 r t+1 − 1 

)
, 

(8) 
1 In the supervised learning setting, the likelihood should be p(D| θ ) = 

 

d p(x d , y d | θ ) . 

m{
here A is the diffusion factor parameter and n is the dimension

f θ and r. r 0 is initialized from the standard normal distribution

 (0 , I ) and ξ 0 is initialized as A . 

Such stochastic gradient MCMC methods are shown to have a

eak posterior-mean convergence instead of a strong sample-wise

onvergence ( Chen, Ding, & Carin, 2015; Sato & Nakagawa, 2014 ).

uch weak convergence is sufficient in many real-world applica-

ions. 

. Stochastic subgradient MCMC 

One central part in all the above HMC methods is the (stochas-

ic) gradient of the log-posterior. However, such a gradient might

ot always be available. In this section, we investigate a more gen-

ral subgradient-based HMC method, analyze its theoretical prop-

rties, and use it for the fast inference of Bayesian linear SVMs. 

.1. Subgradient HMC and its approximate detailed balance 

When the log-posterior is non-differentiable, gradient-based

MC is not applicable. Using the more general subgradients could

otentially address this problem, in analogy to the subgradient de-

cent methods in deterministic optimization ( Shor, Kiwiel, & Rusz-

ayski, 1985 ). 

By plugging the posterior subgradient ∂ θU(θt |D) in the ordi-

ary HMC, we come up with the subgradient HMC with a leapfrog

ethod as: 
 

 

 

 

 

 

 

r t+1 / 2 = r t − h 

2 

∂ θU(θt |D) 

θt+1 = θt + hM 

−1 r t+1 / 2 

r t+1 = r t+1 / 2 − h 

2 

∂ θU(θt+1 |D) , 

(9) 

here r 0 is initialized as r 0 ∼ N (0 , M) and h is the discretization

tepsize. 

From a theoretical perspective, we may not be able to readily

nalyze the volume preservation property of the Hamiltonian dy-

amics with a non-differentiable potential energy nor the detailed

alance of a general subgradient HMC sampler. Instead, we give

n approximated theoretical analysis based on several practical as-

umptions of the potential energy. 

In practical Bayesian models, the non-smoothness of the pos-

erior often lies in the hinge loss induced likelihoods which are

ainly considered in this paper. These posteriors are continuous

verywhere and piece-wise smooth with only a finite number of

on-smooth points. The sampler will hit those non-differentiable

tates with probability zero. Under such practical assumptions, we

how the following approximate detailed balance property, which

laims that the subgradient HMC satisfies the detailed balance

roperty with a polynomial smooth of the potential energy. 

We first give a polynomial smooth of the potential en-

rgy U 0 . The continuous and piece-wise differentiable posterior

 0 is non-smooth on a finite set S = { s i } m 

i =1 
and then the ε-

eighborhoods around all s i are defined as B (s i , ε) = { θ |‖ θ − s i ‖ <
} , i = 1 , 2 , · · · , m. By setting ε small enough, the ε-neighborhoods

an be mutually disjoint: B (s i , ε) ∩ B (s j , ε) = ∅ , ∀ s i , s j ∈ S, i � = j.

sing such mutually disjoint neighborhoods, U ε will be con-

tructed as 

 ε (θ ) = 

{
U 0 (θ ) , ∀ s i ∈ S, θ �∈ B (s i , ε) 
P i,ε (θ ) , θ ∈ B (s i , ε) , 

(10) 

here P i,ε is a multi-dimensional Hermite’s interpolating polyno-

ial ( Bajaj, 1993 ) satisfying 

P i,ε (s i ± ε) = U 0 (s i ± ε) , 
∇ q P i,ε (s i ± ε) = ∂ q U 0 (s i ± ε) . 

(11) 
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Fig. 1. Illustration of Polynomial Smooth Construction. 
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According to the definition of U ε ( Eqs. (10) and (11) ), we can see

that U ε is smooth everywhere. Moreover, when θ �∈ B (s i , ε) , ∀ s i ∈ S,

we have 

 ε (θ ) = U 0 (θ ) , ∇ θU ε (θ ) = ∂ θU 0 (θ ) . (12)

When ε is small enough, the posterior subgradients ∂ θ U 0 used

in Eq. (9) is approximately the same with ∇ θ U ε and it will be

scarcely possible for the sampler to hit those neighborhoods since

the measure of the neighborhood is bounded by ε. Then subgradi-

ent HMC can be equivalent to drawing samples from a smooth pos-

terior U ε instead. With this approximation, the subgradient HMC

satisfies detailed balance and is thus valid for generating approxi-

mate samples from the true posterior U 0 . 

We give an intuitive illustration of the theoretical analysis. In

Fig. 1 , we construct several polynomial smooth functions U ε for a

continuous but non-smooth function U 0 . As can be seen, when ε is

as small as 0.15, U 0.15 is very close to U 0 and it’s very unlikely for

a sampler to use finite samples (such as 100 samples), to hit the

two neighborhoods B (−1 , 0 . 15) and B (1, 0.15). 

3.2. Stochastic subgradient MCMC in practice 

We can obtain the version of stochastic subgradient Langevin

dynamics (SSGLD) by replacing the gradient of the log-posterior

with its subgradient. More formally, SSGLD generates samples by

simulating the following dynamics: {
θt+1 = θt − h 2 

2 
∂ θ ˜ U (θt+1 |D) + hνt 

νt ∼ N (0 , I) , 
(13)

where ∂ θ ˜ U (θ ;D) � −∂ θ log p(θ ) − |D| 
| ̃ D | ∂ θ log p( ̃  D | θ ) is the stochas-

tic noisy estimate of the subgradient ∂ θU(θ ;D) . 

In existing SGLD methods ( Welling & Teh, 2011 ), it is recom-

mended to use a polynomial decaying stepsize to save the MH cor-

rection step of the Langevin proposals. When the stepsize prop-

erly decays, the Markov chain would gradually converge to the

target posterior. One subtle part of the method is thus on tun-

ing the discretization stepsize. A pre-specified annealing scheme

(if not chosen properly) would make the chain either miss or oscil-

late around the target. More recent work Teh, Thiéry, and Vollmer

(2014) recommends some relatively optimal scheme for SGLD.

Inspired by adaptive stepsizes for (sub)gradient descent (Aga-

Grad) methods ( Duchi, Hazan, & Singer, 2011 ), we, in this paper,
dopt the same adaptive stepsize setting for our SSGLD methods

 Li, Chen, Carlson, & Carin, 2016 ). As we shall see in the experi-

ents, such a scheme is beneficial to yield faster mixing speeds. 

We can derive stochastic subgradient Hamiltonian Monte Carlo

ikewise. We adopt an improved version of stochastic gradient

MC ( Ding et al., 2014 ) to derive our stochastic subgradient Nosé–

oover thermostat (SSGNHT), which generates samples via the fol-

owing iterations: 
 

 

 

 

 

r t+1 = r t − ξt r t h − h∂ θ ˜ U (θt |D) + 

√ 

2 A N (0 , h ) 
θt+1 = θt + hr t+1 

ξt+1 = ξt + h 

(
1 

n 

r � t r t − 1 

)
. 

(14)

gain we omit the MH correction step and the SSGNHT simula-

ions would generate posterior samples more efficiently with the

roperly decaying stepsizes and thermostat initialization. 

.3. Stochastic subgradient MCMC for Bayesian linear SVMs 

The stochastic subgradient MCMC can be used for fast sampling

f Bayesian linear SVM. Let D = { (x d , y d ) } D d=1 
be the given train-

ng dataset, where x d is the n -dimensional feature vector of the

 th instance and y d ∈ {−1 , +1 } is the binary label. We use lin-

ar classifiers with a weight vector η ∈ R 

n and the decision rule

s naturally ˆ y = sgn (η� x ) . Then for a Bayesian linear SVM model,

e are interested in learning the posterior distribution p(η|D) ∝
p 0 (η) 

∏ 

d ψ(y d | x d , η) . The prior is commonly set as a standard nor-

al distribution p 0 (η) = N (0 , I) , and the per-datum unnormalized

ikelihood is ψ(y d | x d , η) = exp (−c · max (0 , l − y d η
� x d )) . Then, the

ubgradient of the log-posterior involves evaluating the subgradi-

nt of the non-differentiable log-likelihood 

 η log ψ(y d | x d , η) = 

{
−cy d x d l − y d η

� x d > 0 

0 l − y d η
� x d ≤ 0 . 

(15)

ith this subgradient, we can use the stochastic subgradient

CMC method to do fast sampling for the Bayesian linear SVM

odel. 

. Fast sampling for Bayesian max-margin models with latent 

ariables 

We now show how to leverage the above stochastic subgradi-

nt MCMC methods to derive fast sampling algorithms for Bayesian

ax-margin models with latent variables. We develop algorithms

or two different BMM models with latent variables. 

.1. Fast sampling for max-margin topic models 

For parametric BMM models, whose model parameter number

s fixed, we just calculate the (stochastic) log-posterior subgradient

nd run our stochastic subgradient MCMC method. In this part, we

se Gibbs MedLDA ( Zhu, Chen, Perkins, et al., 2014 ) as an example

o show how to do fast sampling for parametric BMM models. 

.1.1. Gibbs MedLDA 

As illustrated in Fig. 2 , the max-margin topic model has two

arts: 1) a latent Dirichlet allocation model for modeling underly-

ng topic structures of the given documents and 2) a max-margin

lassifier for predicting document labels. The LDA part is a hi-

rarchical Bayesian model which uses an admixture of K topics,

= { �k } K k =1 
, as a latent document representation. Here each topic

k is a multinomial distribution over a V -word vocabulary and has

he symmetric Dirichlet prior Dir( β). For a single document d, N d 

ords are generated and the detailed process is 

1. draw a topic proportion θ ∼ Dir( α), 
d 
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Fig. 2. Graphical model representation of Gibbs MedLDA. 
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2. for each word n (1 ≤ n ≤ N d ): 

(a) draw a topic assignment z dn ∼ Multinomial( θd ), 

(b) draw the observed word w dn ∼ Multinomial (�z dn 
) . 

iven a set of documents W = { w d } D d=1 
, we denote its latent

opic proportions as � = { θd } D d=1 
and its topic assignments as Z =

 z d } D d=1 
, z d = { z dn } N d n =1 

. Let z̄ d be the average topic assignments of

he words in document d , with element z̄ dk = 

1 
N d 

∑ N d 
n I (z dn = k ) . 

We use the Gibbs classifier formulation to build the Gibbs

edLDA model. If we have drawn a sample of the topic assign-

ents Z and the classifier weights η from the posterior distribu-

ion, we can get the prediction of the document label y d ∈ {1, 2,

��, L } as, 

ˆ 
 = argmax y f (y, z d | η) , f (y, z d | η) = η� g(y, z d ) , (16)

here g(y, ̄z d ) is a long vector consisting of L subvectors with the

 th being z̄ d and all others being zero. The corresponding expected

inge loss is 

 

′ ( q (η, �, Z , �) ) 

= 

D ∑ 

d=1 

E q 

[ 
max 

(
0 , l + max 

y � = y d 
f (y, ̄z d | η) − f (y d , ̄z d | η) 

)] 
. (17) 

hen, Gibbs MedLDA infers the latent topic assignments Z and the

lassifier weights η by solving the following RegBayes problem: 

min 

 (η, �, Z , �) 
L ( q (η, �, Z , �) ) + c · R 

′ ( q (η, �, Z , �) ) , (18)

here L = KL (q || p 0 (η, �, Z , �)) − E q [ log (p(W | Z , �)] is the refor-

ulated objective when doing standard Bayesian inference. 

.1.2. Fast sampling for Gibbs MedLDA 

Instead of sampling in the whole space, which may lead to low

fficiency ( Griffiths & Steyvers, 2004 ), we collapse out � and draw

amples form the collapsed distribution, 

p(W , Z , �, y | α, β) = p(η) p(�| β) 
D ∏ 

d=1 

p(w d , z d | α, �) ψ(y d | z d , η) , 

here 

p(w d , z d | α, �) = 

K ∏ 

k =1 

(α + C dk ·) 
(α) 

W ∏ 

w =1 

�C dkw 

kw 

. (19)

 dk · is the number of words in document d that is assigned to

opic k and C dkw 

is the number of words w in document d that is

ssigned to topic k. ψ( y d | z d , η) is defined as, 

(y d | z d , η) 

= exp 

[ 
−c max 

(
0 , l + max 

y � = y d 
η� g(y, ̄z d ) − η� g(y d , ̄z d ) 

)] 
. (20) 

For the collapsed posterior of MedLDA, we can sample classi-

ers η using stochastic subgradient MCMC and sample the topic

odel parameters � using the SGRLD method ( Patterson & Teh,

013 ). With the randomly-drawn document minibatch 

˜ W , we get
he stochastic subgradient of the log posterior with respect to η
s, 

∂ η log ψ = 0 ; if ψ(y d | z d , η) = 1 , 

∂ ηy ∗ log ψ = −c ̄z d , ∂ ηy d 
log ψ = c ̄z d ; if ψ(y d | z d , η) < 1 , 

(21) 

here y ∗ = argmax y � = y η� g(y, ̄z d ) . Here, ηy is the y th subvector of η
hich is corresponding to the non-zero elements of g(y, ̄z d ) and in

he second case of the calculation, the subgradients with respect

o the unmentioned subvectors of η are zero. With the stochastic

osterior subgradient with respect to η, we can use stochastic sub-

radient MCMC to sample η. 

We use the expanded-mean formulation for �: �kn =
 πkn | / ( ∑ 

n | πkn | ) and follow the SGRLD iterations to sample the ad-

ixture � on the Riemannian manifold (Eq. (10) in Patterson &

eh (2013) ). 

The stochastic posterior (sub)gradients with respect to � and

are calculated given the expectation of z̄ ( Mimno, Hoffman, &

lei, 2012 ). To calculate the expectation of z̄ , the Gibbs sampling

terations for the topic assignments of document d is as follows: 

p(z dn = k | z d, −n , �, η) ∝ (α + C −n 
dk · )�kn ψ(y d | ̄z ∗d , η) , (22)

here z d, −n is the topic assignments of other documents, z̄ ∗
d 

is the

verage topic assignments z̄ d after setting topic z dn as k and C −n 
dk ·

s the number of words assignment as topic k in document d af-

er removing word n . With the learned topic admixture � and

lassifier weights η, we randomly draw a sample of � and η and

ake predictions as described in Zhu, Chen, Perkins, et al. (2014) .

he overall stochastic sampler for Gibbs MedLDA is concluded in

lgorithm 1 . 

lgorithm 1 SSGRLD For Gibbs MedLDA. 

Input: documents (w d , y d ) , d = 1 , · · · , D . 

Initialization 

repeat 

Draw a stochastic subset ˜ D 

Draw topic assignments of the documents in 

˜ D using Eq. (22) 

Compute stochastic posterior (sub)gradient with respect to �

and η
Run subgradient sampler for η and � with the stochastic pos-

terior subgradient 

until Converge 

.2. Fast sampling for infinite SVMs 

Another important type of Bayesian max-margin models with

atent variables uses Bayesian nonparametric priors. Such BMM

odels are defined on infinite-dimensional spaces and the size of

he models will be learned from the data. Typical example of this

ype is infinite SVM ( Zhu et al., 2011 ) and we use the HMC-within-

ibbs strategy to build fast sampling methods for this type of

odels. 

.2.1. Gibbs infinite SVM 

Real world data often have some latent clustering structures,

here mixture-of-experts models are generally capable of captur-

ng these local structures. When each expert is a linear SVM, the

esultant mixture of SVMs learns a non-linear model instead of

imply a linear one ( Collobert, Bengio, & Bengio, 2002; Fu, Robles-

elly, & Zhou, 2010 ). Recent work further presents a nonparametric

xtension, infinite SVM (iSVM) ( Zhu et al., 2011 ) (See Fig. 3 ), which

utomatically infers the number of experts. Below, we apply the

ubgradient-based fast sampling method to infinite SVM. 

Given a set of data D = { (x d , y d ) } D d=1 
, we let z d denote the com-

onent assignment for the datum x . Each component is associated
d 
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Fig. 3. Graphical model representation of Gibbs iSVM. 
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with a linear classifier ηz d 
and a Gaussian likelihood (μz d 

, �z d 
)

to describe the input features. 2 All the parameters follow some

priors: a standard Gaussian prior for η and a Gaussian-Inverse-

ishart conjugate prior for ( μ, �). In iSVM, we choose a Chinese

Restaurant Process (CRP) ( Pitman, 2006 ) prior for Z . 

Though alternative approaches exist, we define the expert clas-

sifier as a Gibbs classifier to get uncertainty for the assignments Z

and the classifier weights η. Namely, given the posterior distribu-

tion q ( Z, η), the Gibbs classifier draws a component assignment z d 
and a classifier ηz d 

for each data point x d and makes prediction: 

ˆ y d = argmax 
y 

f (y, x d , z d ) 

f (y, x d , z d ) = η� 
z d 

g(y, x d ) , y ∈ { 1 , 2 , · · · , L } , (23)

where g ( y, x d ) is a long vector consisting of L subvectors with the

y th being x d and all others being zero. We adopt the expected

hinge loss for Gibbs iSVM, 

R 

′ (q (η, γ , Z)) = 

E q (Z,η,γ ) 

[ 

D ∑ 

d=1 

max 

(
0 , l + max 

y � = y d 
f (y, x d , z d ) − f (y d , x d , z d ) 

)] 

. (24)

Together with the Gibbs classifier and the expected hinge loss, we

can define a RegBayes model for the mixture of Gibbs classifiers: 

min 

q (Z,η,γ ) 
L (q (Z, η, γ )) + c · R 

′ (q (Z, η, γ )) , (25)

where γ = (μ, �) are the mean and variance parameters for each

Gaussian component and L = KL (q || p 0 (η, γ , Z) − E q [ log (p(X| Z, γ )]

is the objective function when doing standard Bayesian inference.

With regard to the RegBayes formulation in Eq. (1) , the normalized

posterior distribution of infinite SVM is 

q (Z, η, γ ) ∝ p 0 (η, γ , Z) p(X | Z, γ ) 
D ∏ 

d=1 

ψ(y d | x d , ηz d ) , (26)

where ψ(y d | x d , ηz d 
) = exp (−c max (0 , l + max y � = y d f (y, x d , z d ) −

f (y d , x d , z d ))) . We refer readers to Zhu et al. (2011) and Zhang

et al. (2014) for more details. 

4.2.2. Fast sampling for Gibbs iSVM 

We develop the fast sampling method for Gibbs iSVM by incor-

porating the stochastic subgradient MCMC method within the loop

of a Gibbs sampler. The HMC-within-Gibbs strategy for iSVM is de-
tailed below. 

2 The Gaussian likelihood is optional. 

s

a  

c

For Z : Give η, the conditional distribution is 

p(Z| η) ∝ p 0 (Z ) p(X | Z ) ψ(Y | Z, η) , (27)

here p(X| Z) = 

∫ 
p 0 (γ ) p(X| Z, γ )d γ is the marginal distribution

ia collapsing γ and p 0 ( Z ) is the CRP prior. Let α0 be the hyper-

arameter of the CRP prior and n −d,k be the number of data points

hat belong to component k except d . Given classifiers η and as-

ignments of other data points Z −d , we sample component assign-

ents z d by normalizing the following two probabilities (existing

omponent k and a new component): 

(1) p(z d = k | Z −d , η) ∝ n −d,k ψ(y d | z d = k, ηk ) · p(x d | Z −d , X 
k 
−d 

) 

(2) p(z d = new | Z −d , η) ∝ α0 p(x d ) 
∫ 

ψ(y d | η′ ) p 0 (η′ )d η′ 

In case 2), p(x d ) = 

∫ 
p(x d | γ ) p 0 (γ )d γ is the likelihood of the

ata d and can be computed in closed-form using the conjugate

roperty. The second integral in case 2) can be approximated by

sing importance sampling. 

For η: Give Z , the number of active cluster is known. We need

o efficiently sample the classifier weights ηk of each component k

rom the following conditional distribution, 

p(ηk | Z) ∝ p 0 (ηk ) 
∏ 

d: z d = k 
ψ(y d | z d , ηz d ) , (28)

here p 0 ( ηk ) is a standard normal prior. With our proposed

tochastic subgradient MCMC, the classifiers η can be directly sam-

led using only a minibatch of whole dataset. Here, we give the

tochastic subgradients of the log conditional distribution: 

 ηk 
log 

[ 

p 0 (ηk ) 
∏ 

d: z d = k 
ψ(y d | z d , ηz d ) 

] 

≈ −ηk 

+ 

|D| 
| ̃  D | 

∑ 

d: z d = k, (x d ,y d ) ∈ ̃ D 
∂ η log ψ(y d | x d , ηz d ) , (29)

here the subgradients of the multi-class hinge loss ψ(y d | x d , ηz d 
)

re similarly defined as Eq. (21) . Using this subgradient in the SS-

LD ( Eq. (13) ) or SSGNHT ( Eq. (14) ), we can derive the stochastic

ubgradient inner sampler for classifiers η. 

The whole stochastic HMC(LMC)-within-Gibbs algorithm struc-

ure is outlined in Algorithm. 2 . 

lgorithm 2 Stochastic HMC within Gibbs for infinite SVM. 

Input: data (x d , y d ) , d = 1 , · · · , N, batchsize ˜ N . 

Initialization 

repeat 

sample z given η
sample η given z using stochastic subgradient HMC 

until Converge 

. Experiments 

We now implement our stochastic subgradient MCMC on vari-

us Bayesian max-margin models, including the basic Bayesian lin-

ar SVM and two sophisticated Bayesian max-margin models with

atent variables (GiSVM and Gibbs MedLDA). Our results demon-

trate that stochastic subgradient MCMC can achieve great im-

rovement on time efficiency and meanwhile still generating ac-

urate posterior samples. 

All experiments are done on a desktop computer with single-

ore rate up to 3.0 GHz. The stepsize parameter at iteration t de-

ays via h t = h 0 ∗ (1 + t/b) −γ . Normally, we set b = 1 for SVM clas-

ifier η and b = 100 for topic-word parameter �. We choose h 0 
nd γ via a grid search. Furthermore, the AdaGrad stepsizes are

onsidered for stochastic subgradient Langevin dynamics method. 
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Fig. 4. Visual comparison of posterior samples. 
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Fig. 5. Experimental results of Bayesian linear SVMs. 
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.1. Bayesian linear SVMs 

We first consider the basic Bayesian linear SVM model and

ompare our stochastic subgradient sampling methods with the

ibbs sampler with data augmentation ( Zhu, Chen, Perkins, et al.,

014 ) and the random walk Metropolis with stochastic MH test

 Korattikara, Chen, & Welling, 2014 ) (stochastic random walk

etropolis, SRWM). 

.1.1. Results on synthetic data 

We first test our methods on a 2D synthetic dataset to show

hat our methods give correct samples from the posterior dis-

ribution. Note that we view the results of this experiment as

 simple proof of idea and hence choose the more direct visual

omparison. We follow the Bayesian linear SVM model defined

n Section 3.1 and generate 10 0 0 observations as the synthetic

ataset. Specifically, we generate features x from a uniform distri-

ution x i 
i.i.d ∼ U(0 , 1) and the coefficient vector from a normal dis-

ribution η ∼ N (0 , 1 / 3 · I) . Given the features and coefficients, the

abels are generated from the Bernoulli distribution with parame-

er δ, where, 

= 

ψ(y i = 1 | x i , η) 

ψ(y i = 1 | x i , η) + ψ(y i = −1 | x i , η) 
. 

We compare the samples obtained from SSGLD and SSGNHT

ith those from the data augmentation method which is an ac-

urate sampler for Bayesian SVMs. We take 5,0 0 0 samples for each

ethod after a sufficiently long burn-in stage and give the com-

arison in Fig. 4 , where the densities of the obtained samples are

hown via the grayscales of the grids. The results suggest that our

tochastic subgradient MCMC methods are accurate, although the

tochastic subsampling and the neglect of MH test bring some

oise. This result is compatible with the previous weak conver-

ence analysis of the ordinary HMC methods ( Chen et al., 2015;

ato & Nakagawa, 2014 ). 

.1.2. Results on real data 

We then test two stochastic subgradient MCMC methods, SS-

LD and SSGNHT on the Realsim dataset 3 and the larger UCI Higgs
3 http://csie.ntu.edu.tw/ ∼cjlin/libsvmtools/datasets/binary.html . 

t  

c  

r

ataset ( Asuncion & Newman, 2007 ). The Higgs dataset contains

.1 × 10 7 samples in a 28-dimensional feature space. We randomly

hoose 10 7 samples as the training set and the rest as the testing

et. 

For the Realsim dataset, we set the stochastic batchsize | ̃  D | = 10

or all stochastic inference methods. For Higgs dataset, we set | ̃  D |
o be 1,0 0 0 for both SSGLD and SRWM and | ̃  D | = 100 for SSGHNT.

e use tuned polynomial decaying stepsizes for stochastic subgra-

ient MCMC methods and specifically for SSGLD, we prefer adap-

ive stepsize AdaGrad, which has been successfully applied in the

tochastic (sub)gradient descent ( Duchi et al., 2011 ). For SRWM, the

ariance parameter is set as 0.01. These turn to be a good setting

nalyzed in the following sensitivity analysis in Section 5.1.3 . 

The convergence curves of various methods with respect to the

unning time on both datasets are shown in Fig. 5 . We can see

hat our stochastic subgradient MCMC methods are several magni-

udes faster than the baseline methods. Compared with the Gibbs

ampling with data augmentation method, stochastic subgradient

CMC methods get much cheaper updates and hence are more

calable. Specially for the larger Higgs dataset, a single update

f Gibbs sampling is not finished when the stochastic subgradi-

nt MCMC get converged. Furthermore, although both SRWM and

tochastic subgradient MCMC use stochastic minibatches, stochas-

ic subgradient MCMC methods mix much faster than SRWM be-

ause the posterior subgradient information provides the right di-

ection to the true posterior. 

http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Fig. 6. Sensitivity analysis of the batchsize parameter for both SSGLD and SSGNHT 

on the Higgs dataset ( first row ); and the Realsim dataset ( second row ). 
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Fig. 7. Performance of SSGLD with AdaGrad. 
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5.1.3. Sensitivity analysis 

Tuning the batchsize | ̃  D | reflects an accuracy-efficiency trade-

off, analogous to the bias-variance tradeoff in stochastic Monte

Carlo sampling ( Korattikara et al., 2014 ). In general, using a smaller

batchsize often leads to a larger injected noise, but the computa-

tion cost at each iteration is reduced, which is linear to the batch-

size (i.e., O (| ̃  D | ). When doing cross validation to select parameters,

both accuracy and time efficiency are key factors that should be

taken into consideration. 

Fig. 6 presents the sensitivity analysis of the batchsize for the

two stochastic subgradient MCMC methods on both Higgs and

Realsim datasets. The performance of our stochastic subgradient

MCMC appears to be fairly promising except for extremely tiny

batchsizes. 

In our experiments, adaptive stepsizes (AdaGrad) bring a bet-

ter mixing rate than the polynomial decaying stepsizes. This may

result from the flexible stepsize decaying at different dimensions.

We also give an empirical analysis in Fig. 7 . As can be seen, for the

Higgs dataset, adaptive stepsizes bring better classification results

than the pre-defined polynomial-decaying stepsizes. 
.2. Gibbs max-margin topic models 

Now, we implement the fast sampling for Gibbs MedLDA. We

how the efficiency and accuracy of our stochastic subgradient Rie-

annian Langevin Dynamics (SSGRLD) using the 20news dataset

nd the larger Wikipedia dataset. Following the dataset setting

n Zhu, Chen, Perkins, et al. (2014) , the stop words are removed

ccording to a standard list. We compare our SSGRLD with the

ata augmentation (Gibbs MedLDA) ( Zhu, Chen, Perkins, et al.,

014 ) and its newly developed extension in the online Bayesian

assive-aggressive learning framework (paMedLDA-gibbs) ( Shi &

hu, 2014 ). For the smaller 20news dataset, the involved three

ethods all use the binary version and then adopt the “one-vs-

ll” strategy for multi-class classification. For the larger Wikipedia

ataset, the SSGRLD method uses the multi-class setting and other

wo use the multi-task formulation as described in Zhu, Chen,

erkins, et al. (2014) and Shi and Zhu (2014) . 

.2.1. Classification performance 

We first test on the 20news dataset which consists of

1,269 training documents and 20 categories. We set the hyper-

arameters as α = 1 , β = 1 , c = 1 , � = 164 as suggested in Zhu,

hen, Perkins, et al. (2014) . Fig. 8 (left) shows the number of docu-

ents processed in order to reach a specific accuracy score, where

opic number is set as 50. As we can see, the two stochastic sam-

lers use much fewer documents and efficiently explore the data

edundancy by using a minibatch at each iteration. 

Then we test on the larger Wikipedia dataset which consists

f 1.1 million training documents and 20 categories. We use the

ame hyper-parameter setting with the 20news dataset, except for

 few settings: c = 10 , � = 196 for SSGRLD and � = 1 for both Gibbs

edLDA and paMedLDA-gibbs. We set the topic number as 40.

ig. 8 shows the F1-scores as a function of time. It can be seen that

SGRLD produces comparable classification results. As for the effi-

iency, both SSGRLD and paMedLDA-gibbs are one order of magni-

ude more efficient than the previous Gibbs MedLDA. This is due

o the minibatch training. Meanwhile, although in the same mag-

itude, SSGRLD is still faster than paMedLDA-gibbs. We argue that

his is because SSGRLD does not use augmented variables and di-

ectly draws samples from the SVM classifier. Moreover, the matrix

nversion involved in the data augmentation technique is costly in

he whole procedure. 

.2.2. Topic representations 

Finally, we visualize the discovered topic representations of SS-

RLD on the 20news dataset. For the all 20 categories, we show
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Fig. 9. Visualization of learnt topics by SSGRLD. 

Table 1 

Representative top words of the salient topic(s). 

Category Top words Category Top words 

Atheism God, don, atheism Graphics Image, jpeg, file 

Windows Windows, file, card Pc Scsi, drive, disk, mb, dos 

Mac Mac, apple, drive Windows Window, server, file 

Forsale Anonymity, sphinx rec.autos Car, engine, speed 

Motocycle Bike, ride, bmw Baseball Team, game, runs 

Hockey Team, nhl, season Crypt Key, chip, security, law 

Electronics Power, circuit, wire Medical Food, medical, doctor 

Space Nasa, launch, earth Christian God, jesus, church, bible 

Guns Gun, weapon, firearm Mideast Israel, turkish, jews, arab 

Politics Mr, president, states Religion Jesus, bible, christian 
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4 http://csie.ntu.edu.tw/ ∼cjlin/libsvmtools/datasets/binary.html . 
he average topic representations of the documents form each cat-

gory. As we can see in Fig. 9 , the average topic distribution for

he corresponding classifier is very sparse (only one or two non-

ero entries). We also give the most representative top words of

he salient topic(s) of each category in Table 1 . We can see that

he top words of the salient topic(s) are highly related to the cat-

gory information. For example, the salient topic learned by clas-

ifier sci.space has the top words as NASA, launch, moon, satellite,

tc. These patterns are similar as those in ( Shi & Zhu, 2014; Zhu,

hen, Perkins, et al., 2014 ). 
.3. Infinite SVMs 

The proposed subgradient-based sampling methods can also be

sed for fast inference of infinite SVM ( Zhu et al., 2011 ), a Dirichlet

rocess mixture of large-margin kernel machines. 

We choose two datasets, Protein and IJCNN1, to test our meth-

ds. The Protein dataset ( Zhang et al., 2014 ) was created for Protein

old classifications and consists of 698 samples and 27 classes with

1 features. The IJCNN1 dataset 4 is originated from an engine sys-

em binary classification problem and consists of 49,990 training

amples with 22 features. 

We implement two inference methods for iSVM including SS-

NHT within Gibbs ( Algorithm 2 ) and Gibbs sampling with data

ugmentation ( Zhang et al., 2014 ). Other models are also imple-

ented for comparison, such as multinomial logit model (MNL),

inear SVM, RBF-SVM and DP mixture of generalized linear mod-

ls (dpMNL) ( Shahbaba & Neal, 2009 ). We use cross-validations to

hoose hyper-parameters and get the results in Table 2 . 

We can see that nonlinear models using a mixture-of-experts,

uch as GiSVM and dpMNL, are superior in classification. In the

tochastic subgradient MCMC, η sampling step can be dramati-

ally accelerated, with comparable or even better prediction per-

ormance. This superiority results from both stochastic subsam-

http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 2 

Efficiency (in minutes) and accuracy of various models on the Protein and IJCNN1 datasets. 

Datasets Protein IJCNN1 

Accu(%) Time for η Total Time Accu(%) Time for η Total Time 

MNL 50 .0 – 0 .10 91 .3 – 3 .21 

Linear SVM 50 .8 – 0 .03 91 .0 – 0 .56 

RBF-SVM 53 .1 – 0 .11 93 .9 – 2 .79 

dpMNL 56 .3 – 7 .64 94 .0 – 7 .62 

Gibbs-iSVM 55 .8 ± 0.0 8 .31 ± 0.27 15 .15 ± 0.29 94 .2 ± 0.7 9 .13 ± 0.95 22 .71 ± 1.16 

SSGNHT-iSVM 56 .1 ± 0.0 0 .17 ± 0.02 7 .32 ± 0.26 94 .2 ± 0.8 1 .17 ± 0.08 13 .84 ± 1.90 
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pling and avoiding the matrix inversion in the data augmentation

technique. 

6. Conclusions 

We systematically investigate the fast sampling methods for

Bayesian max-margin models. We first study a general subgradient

HMC sampling method and several stochastic variants including

SSGLD and SSGNHT. Theoretical analysis shows the approximated

detailed balance of the proposed stochastic subgradient MCMC

methods. Then we apply the stochastic subgradient samplers to

Bayesian linear SVMs and two sophisticated Bayesian max-margin

models with latent variables (GiSVM and Gibbs MedLDA). Exten-

sive empirical studies demonstrate the effectiveness of the stochas-

tic subgradient MCMC methods on improving time efficiency while

maintaining a high accuracy of the samples. 

The strengths of our methods are 1) fast inference for BMM

models compared with the previous Gibbs sampling method with

data augmentation; 2) accurate sampling which is as good as the

Gibbs sampling with data augmentation and 3) applications to

non-conjugate posterior sampling which cannot be simply accom-

plished. However, when the data sizes of the applications are too

large to be processed in a single machine, it is still difficult to use

only stochastic subgradient MCMC to solve the problem. 

We consider the future work in three categories: algorithm-

level, model-level and application-level. For the proposed algo-

rithm itself, the future work includes further scaling up using par-

allel computation ( Ahn, Shahbaba, & Welling, 2014 ). For the model

setting, the future work includes applying our method to other

models with continuous but non-smooth posteriors, such as sparse

models with Laplacian priors. At the application level, we consider

using our method to scale up several Bayesian max-margin models

that are used in intelligent systems, such as nonparametric max-

margin matrix factorization for collaborative filtering ( Xu et al.,

2012 ). 

The big data is identified as an important building block of in-

telligent systems ( Lehmann et al., 2015; Manyika et al., 2011 ) and

the fast inference is becoming a central element therein ( Park,

Park, Jung, & Lee, 2015 ). For related Bayesian models ( Pearl, 2014 ),

big learning with Bayesian models is one of the recent research

focuses ( Zhu, Chen, & Hu, 2014 ). Particularly, the Bayesian max-

margin models are well studied for various machine learning ap-

plications, but they still lack fast inference methods. Our method

accomplishes fast sampling for the BMM models, which will be

used in future large scale intelligent systems. 

Acknowledgments 

The work was supported by the National Basic Research Pro-

gram (973 Program) of China (No. 2013CB329403), National NSF

of China Projects (Nos. 61620106010 , 61322308 , 61332007 ), the

Youth Top-notch Talent Support Program, Tsinghua Initiative Sci-

entific Research Program (No. 20141080934), and the Collaborative

Projects from Intel and Tencent. 
eferences 

hn, S. , Shahbaba, B. , & Welling, M. (2014). Distributed stochastic gradient MCMC.

ICML . 
rnold, V. I. (1978). Mathematical methods of classical mechanics : vol. 60. Springer . 

suncion, A., & Newman, D. (2007). UCI machine learning repository. 

Bajaj, C. L. (1993). Multi-dimensional Hermite interpolation and approximation for
modelling and visualization. In ICCG (pp. 335–348). Citeseer . 

ottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
COMPSTAT (pp. 177–186). Springer . 

Chen, C. , Ding, N. , & Carin, L. (2015). On the convergence of stochastic gradient
MCMC algorithms with high-order integrators. NIPS . 

Chen, T. , Fox, E. , & Guestrin, C. (2014). Stochastic gradient Hamiltonian Monte Carlo.

ICML . 
ollobert, R. , Bengio, S. , & Bengio, Y. (2002). A parallel mixture of svms for very

large scale problems. Neural Computation, 14 (5), 1105–1114 . 
ing, N. , Fang, Y. , Babbush, R. , Chen, C. , Skeel, R. D. , & Neven, H. (2014). Bayesian

sampling using stochastic gradient thermostats. NIPS . 
uchi, J. , Hazan, E. , & Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. JMLR, 12 , 2121–2159 . 

Fu, Z. , Robles-Kelly, A. , & Zhou, J. (2010). Mixing linear SVMs for nonlinear classifi-
cation. Neural Networks, IEEE Transactions on, 21 (12), 1963–1975 . 

Gelman, A. , Carlin, J. B. , Stern, H. S. , & Rubin, D. B. (2014). Bayesian data analysis :
vol. 2. Taylor & Francis . 

Germain, P. , Lacasse, A. , Laviolette, F. , & Marchand, M. (2009). PAC-Bayesian learning
of linear classifiers. ICML . 

riffiths, T. L. , & Steyvers, M. (2004). Finding scientific topics. Proceedings of the Na-

tional Academy of Sciences, 101 (suppl 1), 5228–5235 . 
orattikara, A. , Chen, Y. , & Welling, M. (2014). Austerity in MCMC land: Cutting the

Metropolis-Hastings budget. ICML . 
ehmann, J. , Isele, R. , Jakob, M. , Jentzsch, A. , Kontokostas, D. , Mendes, P. N. ,

et al. (2015). DB pedia–a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6 (2), 167–195 . 

i, C. , Chen, C. , Carlson, D. , & Carin, L. (2016). Preconditioned stochastic gradient

Langevin dynamics for deep neural networks. AAAI . 
anyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. et al. (2011).

Big data: The next frontier for innovation, competition, and productivity,
McKinsey Global Institute ( http://www.mckinsey.com/insights/mgi/research/

technology _ and _ innovation/big _ data _ the _ next _ frontier _ for _ innovation ; ac-
cessed August 4, 2012). 

cAllester, D. (2003). Pac-bayesian stochastic model selection. Machine Learning, 51 ,
5–21 . 

imno, D. , Hoffman, M. , & Blei, D. (2012). Sparse stochastic inference for latent

dirichlet allocation. ICML . 
eal, R. M. (2012). MCMC using Hamiltonian dynamics. arXiv preprint, arXiv:1206.

1901 . 
ark, Y. , Park, S. , Jung, W. , & Lee, S.-g. (2015). Reversed CF: A fast collaborative filter-

ing algorithm using a k-nearest neighbor graph. Expert Systems with Applications,
42 (8), 4022–4028 . 

atterson, S. , & Teh, Y. W. (2013). Stochastic gradient Riemannian langevin dynamics

on the probability simplex. NIPS . 
earl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible in-

ference . Morgan Kaufmann . 
Pitman, J. (2006). Combinatorial stochastic processes: Ecole D’eté de probabilités de

Saint-Flour XXXII-2002 . Springer . 
Polson, N. G. , & Scott, S. L. (2011). Data augmentation for support vector machines.

Bayesian Analysis, 6 (1), 1–23 . 

obbins, H. , & Monro, S. (1951). A stochastic approximation method. The Annals of
Mathematical Statistics , 400–407 . 

oberts, G. O. , & Stramer, O. (2002). Langevin diffusions and Metropolis-Hastings
algorithms. Methodology and Computing in Applied Probability, 4 (4), 337–357 . 

ato, I. , & Nakagawa, H. (2014). Approximation analysis of stochastic gradient
Langevin dynamics by using Fokker-Planck equation and ito process. Icml . 

Shahbaba, B. , & Neal, R. (2009). Nonlinear models using Dirichlet process mixtures.

JMLR, 10 , 1829–1850 . 
hi, T. , & Zhu, J. (2014). Online Bayesian passive-aggressive learning. Icml . 

hor, N. Z. , Kiwiel, K. C. , & Ruszcayski, A. (1985). Minimization methods for non-dif-
ferentiable functions . Springer-Verlag New York, Inc. . 

Teh, Y. W., Thiéry, A., & Vollmer, S. (2014). Consistency and fluctuations for stochas-
tic gradient Langevin dynamics. arXiv preprint, arXiv:1409.0578 . 

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0016
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0018
http://arxiv.org/abs/1206.1901
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0029
http://arxiv.org/abs/1409.0578


W. Hu et al. / Expert Systems With Applications 69 (2017) 277–287 287 

T  

W  

X  

X  

Z  

Z  

Z  

Z  

Z  

Z  

Z  
ian, T. , & Zhu, J. (2015). Max-margin majority voting for learning from crowds. Nips .
elling, M. , & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin

dynamics. ICML . 
u, M. , Zhu, J. , & Zhang, B. (2012). Nonparametric max-margin matrix factorization

for collaborative prediction. NIPS . 
u, M. , Zhu, J. , & Zhang, B. (2013). Fast max-margin matrix factorization with data

augmentation. ICML . 
hang, A. , Zhu, J. , & Zhang, B. (2014). Max-margin infinite hidden Markov models.

ICML . 

hu, J. (2012). Max-margin nonparametric latent feature models for link prediction.
ICML . 
hu, J. , Ahmed, A. , & Xing, E. P. (2012). MedLDA: Maximum margin supervised topic
models. JMLR, 13 (1), 2237–2278 . 

hu, J., Chen, J., & Hu, W. (2014). Big learning with Bayesian methods. arXiv preprint
arXiv:1411.6370 . 

hu, J. , Chen, N. , Perkins, H. , & Xing, E. P. (2014). Gibbs max-margin topic models
with data augmentation. JMLR, 15 , 1073–1110 . 

hu, J. , Chen, N. , & Xing, E. P. (2011). Infinite SVM: a Dirichlet process mixture of
large-margin kernel machines. ICML . 

hu, J. , Chen, N. , & Xing, E. P. (2014). Bayesian inference with posterior regulariza-

tion and applications to infinite latent svms. JMLR, 15 , 1799–1847 . 

http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0036
http://arxiv.org/abs/1411.6370
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30576-0/sbref0039

	Fast sampling methods for Bayesian max-margin models
	1 Introduction
	2 Preliminaries
	2.1 Bayesian max-margin models
	2.2 BMM models with a Gibbs classifier
	2.3 Hamiltonian Monte Carlo
	2.4 Stochastic gradient HMC

	3 Stochastic subgradient MCMC
	3.1 Subgradient HMC and its approximate detailed balance
	3.2 Stochastic subgradient MCMC in practice
	3.3 Stochastic subgradient MCMC for Bayesian linear SVMs

	4 Fast sampling for Bayesian max-margin models with latent variables
	4.1 Fast sampling for max-margin topic models
	4.1.1 Gibbs MedLDA
	4.1.2 Fast sampling for Gibbs MedLDA

	4.2 Fast sampling for infinite SVMs
	4.2.1 Gibbs infinite SVM
	4.2.2 Fast sampling for Gibbs iSVM


	5 Experiments
	5.1 Bayesian linear SVMs
	5.1.1 Results on synthetic data
	5.1.2 Results on real data
	5.1.3 Sensitivity analysis

	5.2 Gibbs max-margin topic models
	5.2.1 Classification performance
	5.2.2 Topic representations

	5.3 Infinite SVMs

	6 Conclusions
	 Acknowledgments
	 References


